Monday 6 February 2012

Fascia:The New Biomechanics of Human Movement

The fascia system’s ability to transmit forces is an important part in human biomechanics. Though the tensional load bearing function of tendons and ligaments has never been in question; Huijing (2009) revealed that via their epimysia a significant portion of their force is transmitted laterally positioned tissues such as to adjacent synergistic muscles and to the antagonistic muscles. Recent ultrasound based measurements (Fukunaga, 2002) indicated that fascia tissues are commonly used for a dynamic energy storage a catapult action which occurs during oscillatory movements such as walking, hopping or running. During such movements the supporting skeletal muscles contract more isometrically while the loaded fascia elements lengthen and shorten like elastic springs (Fukunaga . 2002). This phenomenon may occur due to the fascia network serving as a sensory organ and to its densely innervated myelinated sensory nerve endings which are assumed to serve a proprioceptive function (Schleip 2003). In fact the fascia contains 10 times as many sensory spinals then in muscle tissue (Stecco, 2009) all to inform the CNS of the shear forces, pressure and tension associated with movement.

No comments:

Post a Comment